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Abstract. Self-avoiding random surfaces on a cubic lattice are studied by extensive Monte 
Carlo sampling. The surfaces have empty boundary and the topology o l  a 2-sphere. An 
oct-tree data-structure allows good statistics to be obtained for surfacer whore plaquette 
number is up to a n  order of magnitude greater than i n  previous investigations. The new 
simulation strategy is explained i n  detail and compared with previous ones. The critical 
plaquette fugacity, fiL', and the entropic exponent, R, are determined by maximum likeli- 
hood methods and by logarithmic plots of the average surface area versus fugacity. The 
latter approach, which producer results having much better convergence by taking advan- 
tage of the scaling properties of several runs at various fugacities, leads to the estimates 
p = 1.729i0.036and 0 = 1.500*0.026. Linear regression estimatesfortheradiurofgyration 
exponent give Y =0.509*0.004, while the asymptotic ratio of surface area over average 
volume enclosed approaches a finite value 3.18*0.03. Our results give strong corroborating 
evidence that this long-controversial problem belongs to the universality class ol branched 
polymers. 

1. Introduction 

Both lattice and  continuum models of random surfaces (ns) have attracted much 
attention in the recent literature. Among the  many motivations for this interest are 
connections with lattice gauge theories [I-31 and possible applications to problems in 
condensed matter physics. RS are geometrical generalizations of random walks, which 
play a very fundamental role in fields such as polymer physics. Indeed, from the earliest 
studies of RS, there has been a natural tendency to treat their statistics within the 
framework of schemes directly inspired by those used in polymer physics [4-71. On 
the other hand, being characterized by new properties, like intrinsic curvature, genus 
and  orientability, RS models are expected to display a much richer variety of universality 
classes than their random walk counterparts, so that caution must be exercised in 
applying schemes used for random walks. 

At present, our  understanding of RS models in finite dimensions relies on numerical 
investigations, mostly using Monte Carlo methods. As we have already mentioned, 
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analysis of results is more delicate than for random walks. Another barrier to carrying 
out such investigations is the need to store a very large amount of information in order 
to describe the configuration of RS. This information is much greater than that normally 
needed in walk problems of comparable size. Thus, RS simulation is another field in 
which substantial progress can be made only if efficient data-structures and robust 
numerical methods are introduced in such a way as to allow sufficiently fast and 
accurate computations. 

In this study we consider a model of RS on a 3~ cubic lattice, i.e. the RS are 
constructed by gluing together elementary square plaquettes of the lattice according 
to the following prescription. A surface S is given by a set of IS1 distinct plaquettes. 
Each plaquette is used only once to build S, and at each of its four edges, it is connected 
to one and only one other plaquette. A self-avoidance constraint is imposed in the 
sense that not only plaquettes hut also their edges (which coincide with the bonds of 
the 3D lattice) enter at most once in S. Corner overlaps are still allowed. We must also 
specify the boundary conditions and the topology. Our surfaces are closed, so that the 
boundary is fixed but null. It is known [8] that convergence with fixed boundary 
conditions is much lower than with free boundaries. We assume the topology to be 
that of a 2-sphere (i.e. genus 0), thereby excluding handles. An excellent review of 
this problem is given in [9]. 

There are two quantities of primary interest to us: N ( n ) ,  the number of possible 
surface configurations with IS1 = n, and R ( n ) ,  the radius of gyration with respect to 
the centroid of each configuration, averaged over all N ( n )  configurations with IS( = n. 
In counting, we assume that each configuration is equivalent to all others obtained by 
lattice translations. Thus, by surface configuration we actually imply an equivalence 
class of configurations which coincide under such translations. On the basis of heuristic 
arguments, the following asymptotic behaviours are expected at large n :  

N ( n ) -  C a p n  (1) 

and 

The existence of the large-n limit of n - ’  In N can be established by generalizing a 
theorem of Hammersley [lo] on self-avoiding walks to self-avoiding surfaces [5]. The 
exponent 8 relates to entropic aspects, while Y can be naturally interpreted as the 
reciprocal of the fractal, or capacity, dimension of surfaces. 

Very little exact information is available about self-avoiding RS (SARS)  models such 
as that described above. In particular, the determination of 8, p and v is essentially 
an open question [ l l ,  121. A property of self-avoiding surfaces models is that they 
most probably collapse into non-interacting branched polymers in the limit of high 
dimensionality, implying U = 4 and 8 = $ [6, 131. Early real-space renormalization-group 
calculations and Flory arguments, in the style of polymer statistics, suggested that the 
exponent v of SARS at low dimensionality could he distinct from that of self-avoiding 
branched polymers, although the two problems would share the same upper critical 
dimension [4]. 

Sterling and Greensite [14] performed the first Monte Carlo calculation in 3D for 
a SARS. Considering the same model described here, in a grand canonical ensemble, 
they estimated 8 = 0.5 +0.05, which would seem to exclude, at least for 8, the possibility 
of 8 =; and U =$, the values expected for branched polymers in ID [15]. On the other 
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hand, in an  exact enumeration u p  to 10 plaquettes, Redner [16] found values of 0 and 
which seemed compatible with those of branched polymers. However, he did not 

restrict the type of boundaries nor the topology. Thus, the identification with branched 
polymer behaviour seems less surprising; it is reminiscent of another plaquette model 
discussed, e.g. in [9,17, 181. Further evidence for 0 = 5 and v = f  was obtained by Glaus 
and Einstein [9,19] with Monte Carlo simulations, which improved on the work of 
[14]: Concurrently, Karowski [20] presented Monte Carlo results for our model 
suggesting that the exponent v could indeed be distinct from f and instead have a 
value of the type first suggested by Maritan and  Stella [4]. Although Karowski’s 
approach seems less systematic than Glaus’s, he did test a domain of larger n, closer 
to the asymptotic limit. His results thus cast doubts on the identification of the model 
with branched polymers. 

Further stimulation to reconsider carefully this sort of problem came from the very 
recent prediction that closed SARS with unrestricted number of handles should enclose 
an average volume growing like R’ [21]. Monte Carlo estimates reported so far of the 
ratio between average enclosed volume and surface area rather indicated a volume 
growing with a power of R close to 2 in  the case of spherical topology [9,19], as a 
consequence of the fact that the ratio seemed to remain finite for n +m, and U = ; .  It 
is now of particular importance to test the situation more carefully, because, i f  the 
contention of [9] and [19] is confirmed, this, in the light of what was found by Banavar 
er a1 [21], would reveal a very non-trivial role played by topology in determining 
different universality classes for S A R S  problems. 

Because of the above somewhat unsettled situation and challenges, we decided to 
undertake a new Monte Carlo investigation of the model of SARS with spherical 
topology, based on a more efficient computational approach than previous ones. This 
paper presents the results of such a study, a n d  includes a thorough discussion of the 
computational strategy, with particular emphasis on the implementation of an oct-tree 
data-structure, which is unfamiliar to most physicists. To our  knowledge, oct-trees 
have not yet been applied to this sort of problem, and we hope that our  application 
ofthem will convince readers of the utility of sparse data-structures in complex problems 
of computational physics. 

The rest of this paper is organized as follows: in the second section we outline our  
Monte Carlo method and  illustrate how the oct-tree data-structure works. When 
appropirate, we also draw comparison draw comparisons with the methods used in 
previous work. The third section is devoted to the presentation and analysis of our  
results. I n  the last section, we give our conclusions. 

2. Monte Carlo algorithm and oft-tree data-structure 

Our Monte Carlo procedure generates SARS on a cubic lattice in a grand canonical 
ensemble at fixed plaquette fugacity p. Thus, the statistics of the generated surfaces 
can be derived from a partition function of the form 

m 

z(p)=zlsl’pl”1= 1 n “ N ( n ) P ” .  (3) 
S n =e 

The inclusion of the integer exponent x in the weighting function amounts to taking 
the xth derivative of the partition function with x = 0. If the value of x is increased, 
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the percentage of larger surfaces in the distribution is enhanced, but autocorrelation 
times also increase, as described in section 3.1. As pointed out in [I91 and explored 
in section 3.2, only when x is a t  least 3/2 does the distribution of surface areas peak 
at non-zero ISI. More importantly, we show that x must be above 112 in order for the 
simple analysis procedure of [ 141 to be viable. Except for one run at  x = 2, we have 
used x = 3 in this study. As in [9,19], our algorithm is a refinement of the Monte Carlo 
procedure first introduced by Sterling and Greensite [14]. Given a surface S, an attempt 
to modify it  is made by searching for elementary cubes of the lattice having at least 
one face belonging to S. If such a cube is found, we reverse the status of each of its 
six faces, regarding whether or not each belongs to the surface S. This process leads 
to a new surface S', which can be accepted only if it turns out to obey the geometrical 
and topological constraints imposed on the model. If the constraints are satisfied, then 
the acceptance of the new surface is subject to satisfaction of the usual Metropolis 
condition consistent with the grand canonical fugacity p in the partition function. 

In 1141 the search for cubes was made by sweeping through all those contained in 
a l o x  lox  10 box. In subsequent studies [9, 191, the search was restricted to the set of 
cubes with at least one face belonging to the surface. In this way, surfaces fitting in a 
20 x 20 x 20 box could he generated. This box still imposes a rather severe finite-size 
limitation. These approaches are inefficient in that a well defined location in computer 
memory must be reserved for each cube in the box, whether or not it actually touches 
the surface. We can, however, store information about the surface configuration using 
a sparse data-structure, the act-tree, in which memory is only used for those cubes 
which actually touch the surface, while all others can be ignored. This procedure allows 
us to escape the restriction that surfaces fit in a finite box. 

Before describing the data-structure explicitly, we comment on the way in which 
our grand canonical weight in the partition function (3) is actually obtained. In [9, 191, 

faces in common with it. If we denote by / /S/ l  the number of such cubes for a surface 
S, the random choice implies a factor l/llSll in the transition rate from S to any 
configuration S' accessible from S. Detailed balance then clearly implies that the grand 
canonical weight for a surface S should contain a factor IlSI/. Here we prefer to proceed 
in a way such that IS/, rather than llSll factors appear in the grand canonical weight, -- ..-.:-:--.-A :- 1 1 1  n__- :- tL- c--i ---,I..- ..Ir-:-- :i .---A- ..,:+hix .La cl+ a> ' l""c,prr" 111 ,.,,. I,,">, 111 ""I L'l.,C L U G  L l l D L  L y L l l " " l l l  LIIUILC 1J L l l l U C  111111.11 L l l r  3 C L  

of all IS( elementary plaquettes of S. We then choose one of the two cubes sharing 
this plaquette and perform the usual inversion operation on it. Since this process allows 
the same cube to be chosen with more than one plaquette choice, we must unbias the 
procedure so that each distinct possible modification of S has an equal a priori 
probability, Again, calling S' the surface produced by inversion of the chosen cube, 

is the number of different plaquettes in S the choice of which can lead to the selection 
of the cube in  question. 

We can get rid of this bias if we slow down the rate by a factor of I / K S S .  by the 
usual Metropolis procedure of stopping the transition if a random number chosen in  
[0,1] is greater than k/KSS. .  In order finally to obtain the weight in (3 ) ,  we have to 
appp!y a! !.as! one hr ther  s!owizg-d!?wn process. 

each move of ihe srrrface W B S  made by seieciing randor,ily among iiie c.u;es having 

+ha m-.._ C A  '2, nntt.oll.. h l r  - - n h - h i l i + . r  ., / I C  in tho h i 9 r - A  n r ~ r a A ~ i r e  where w... 
,,,L 11IU"C U -  U P C L U Y ' B J  ,,a0 p"""'."..,LJ n,y.y/ ( U ,  11. LX... " S U I . "  pa"*'"*.-, .. 1 . I . I  n>> 

In fact, our calculation inserts two filters. The first determined by the ratio 

JSJ 
I SI + I S'I 
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in  all cases, and  the second by 

in case IS'( > IS(, and otherwise 

IS'Y 
\SI' + IS'I" ' 

In this way we get a transition rate for a n  allowed move S +  S' that is of the form 

where 

1 1 
A(S,  S ' j  = A($", S j  =- 

IS1 + IS'I IS/" + IS'/" 

Detailed balance then clearly implies that the equilibrium probability of a surface IS( 
is proportional to /Sl"p's ' ,  consistent with (3). 

In our  runs, the probability of occurrence of a surface with (5' = n is 

Unlike the simulations reported in [6,9, 191, we d o  not keep one plaquette of the 
surface fixed. In those simulations, the fixed plaquette served to increase x effectively 
by one. Another increase of one compared t o  [14] was achieved in [9,19] by sweeping 
only over the surface rather than the whole box. (Note, however, that we d o  not allow 
the last remaining cube of a surface to vanish, so that we always have n 2 6 . )  

As has been mentioned, we have been able t o  perform simulations that generate 
very large configurations, because we use a sparse data-structure, the oct-tree. Oct-trees 
are a data-structure for storing information about 3~ space. Briefly stated, the oct-tree 
data-structure represents a cube of arbitrary size. The same amount of computer 
memory can represent a physically small cube as well as a large one. Part of each 
cube's data-structure denotes whether the cube is empty, full, or partially full. If the 
cube is empty or  full, there is nothing else t o  describe. If the cube is partially full, it 
is divided into eight sub-cubes (figure l ) ,  hence the  term 'oct'. Each of these may in 
turn be either empty, full, o r  partially full. This description is continued recursively 
until all partially full octs are described in terms of empty or  full octs, o r  until some 
desired degree of resolution has been reached. This hierarchical representation of a 
volume is an oct-tree. The first oct in the tree is called the oct-root. For the purposes 
of our work, the term 'cube' refers to a unit cube of the lattice (i.e. an oct of the finest 
resolution). To illustrate the labelling of cubes, we present in figure 1 an example of 
a configuration with a volume of three cubes. 

The present use of oct-trees is quite different from the typical one. The ordinary 
implementation starts with a single oct that represents the total working volume. The 
oct is divided as objects of importance are discovered in the workspace. This is carried 
out recursively down to whatever resolution is required. Our representation task is 
similar, but instead of splitting octs to get more resolution, we double the linear 
dimension of octs when our volume grows. The finest level of resolution is fixed at 
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3-0 O b j e c t  

Figure 1. Illustration of the oct data-structure, with successive divisions of cubes into eight 
sub-cubes. As a specific example, description of a three-cube object is shown to require 
two levels below the root (i.e. ‘grandchilren‘). E, P and F denote empty, partially filled 
and full. respectively. 

the unit cube throughout the calculation, but the working volume is not fixed. When 
a cube appears outside of the oct-tree, we create a new root for the tree that is large 
enough for the new object. The old root oct becomes one of the children of the new 
root Oct. When an act’s eighth child is filled, the oct is marked as full and all storage 
previously used to store the children is released. Each parent notices when its last 
child has become full and executes the same procedure. This recursive process keeps 
the actual amount of storage in the oct-tree to a minimum. An inverse process occurs 
when an act’s only child is deleted. The oct is marked empty and space reserved for 
children is released. This is also executed recursively, as each parent notices when its 
last child had become empty and releases space no longer used. 

Functionally, all an oct consists of is pointers to children. For application to SARS, 

we have augmented this with a parent pointer, a single coordinate to identify one 
corner of the oct in space, and a count of the number of children in  the current Oct. 
We have also augmented the oct structure so that it  stores any faces that lie on the 
surface. This is easily done with a six-element bit map for the six possible faces on 
each cube. 

One procedure is of special interest because it is the most heavily used and illustrates 
a particularly nice feature of the oct-tree in physical simulations: oct-find is used to 
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find the oct at a given coordinate. Since the height of the oct-tree is logarithmic with 
the size of the lattice, searching is very efficient. Starting at the root, the procedure 
compares the coordinate to the midpoint in each direction. With three comparisons, 
the appropriate sub-oct is located within which the x, y, z coordinate is guaranteed to 
lay. This process is recursively repeated until we arrive at the correct cube. As we step 
down through the oct-tree, the linear dimension of the working volume is halved in 
each direction. Thus, the search time is 

O(3 iogs(nj j  = O ( i o g , ( n j )  (63 

i.e. a binary search. Thus, if it takes k steps to execute oct-find in a 2 x 2 x 2 lattice, it 
takes Sk steps to do so in a 32 x 32 x 32 lattice, and only 20k steps in  a 1 048 576 X 

1 048 576 x 1 048 576 lattice. An expanded presentation of many aspects of this section 
is given in [22]. 

3. Monte Carlo results and their analysis 

3.1. Maximum likelihood derermination of p and 8 

We performed extensive Monte Carlo runs on Convex C120, IBM RS6000 and SGI 
computers, generating surfaces consistent with the equilibrium partition function (3) 
for various values of p below the actual critical value of the model p. = F- ' ,  which 
in [19] was 0.577i0.002. It is crucial that we have p <pc  to prevent the surface from 
growing without bound. Figure 2 shows three of the distributions we obtained from 
runs of 10' Monte Carlo steps (MCS) for x =3. In  earlier work [14], a smaller value 
of p (0.531) was needed because of the stringent finite-size limitation. Karowski [20] 
examined many values of B between 0.53 and 0.54. 

0.025 

0.020 

0.015 2 m 
m a 
g 0.010 
a 

0.005 

0.000 
0 i 00 200 300 400 

IS1 
Figure 2. Plots o f  distributions of occurrences of surfaces ils a function of their area, 
normalized by the total number ofoccurrences. for p =0.5h (0). 0.5h8 ( + I ,  and 0.572 ( x ) .  
In each case, .v = 3 .  
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As seen in figure 2 a n d  implicit in (31, the distribution of surface areas should peak 
a t  larger values of n as p increases. Likewise, at fixed values of p the  distribution of 
surface areas should peak at larger values of n as x increases. This behaviour was 
corroborated in a plot similar to figure 2 of distributions from runs a t  p =OS6 with 
x = 2 and 3. Thus, runs with x = 3 have the advantage of sampling a relatively higher 
percentage of surfaces with high 1SI; for this reason in all other runs with different 
values of p we chose x = 3. Interestingly, this is also the disadvantage of using larger 
x: since the mean configuration size is larger, autocorrelation is amore serious problem. 

To be certian our  observed configurations were statistically independent, we used 
50 000 MCS between samples for runs with p 2 0.565. It should be pointed out that the 
estimate of correlation time reported in [9] and  [19] for p =OS6 is more optimistic 
than ours. There, sampling was done every 5000 MCS, an interval about one-fourth the 
size of our  estimated correlation time for this case. We estimated that the correlation 
time increases with an exponential law as p + pc = p-I. It is also apparent from figure 
2 that for relatively small n (less than about 50) ,  there are actually two distributions: 
there are far more surfaces with areas n that a re  odd multiples of 2 than even multiples 
(and in fact none with IS1 = 8 or  12). This observation is related to the fact that not 
every value of /SI is possible (e.g. only 6, 10 and  14 can occur for small configurations). 
This is reflected in the bimodal values in the plots of effective exponents versus nmin 
discussed below. 

Using the maximum likelihood method, we analysed the distributions like the ones 
depicted in figure 2 to extract estimates for 8 and  p fordifferent values of@. Application 
of this method to self-avoiding walks is discussed extensively in [23]. It was used by 
[9, 191 for our  SARS problem. In  the simplest mode, one assumes the relation (1) is 
strictly satisfied for n > nmjn. Pursuant to this assumption, one  observes the 'experi- 
mental' expectation values of the two quantities 

O , ( S )  = ISl@(lSl- ( 7 )  

OLS)  = In(lSl)@(lsl- n m J  (8) 
where 0 is the Heaviside unit step function. The  maximum likelihood estimates of p 
and 8 are then obtzined as s o l d o n s  of the pair of eqcztions 

and  

(O,),,,= (OAh (9) 

(0J"h = (OAh (10) 

where the left-hand sides are the computed Monte Carlo expectation values, while on 
the right-hand sides we insen the theoretical expectation values based on ( I ) ,  assumed 
vaiid For n 3 nmin 

The numerical solution of this nonlinear system requires great care. For instance, the 
computed Monte Carlo expectation values require summing over many terms of widely 
",L,c,,,lg ,u'lg,,,L"uC>. nu aYulU l " U l l U " l l  allu LI " I I L ' I L I V I I  U I I I I C U I L I S J  111 p lVcc"J"1~ (7, 

and (lo),  we needed to use all terms-presorted-on the left-hand sides and 1000 
terms on the right-hand sides. Sums were computed in double precision. The nonlinear 
equations themselves present a more serious difficulty: let F(p,  8) be the (two- 
component) difference between the right- and  left-hand sides of (9)  and  (IO). Figure 

>:'I--:-- _^^^:&..,I"" T^ -..-:_I --..->"a ̂_-I ^^.:^^ I I :FC". . , * :^^ :.. --,.,-e"":"" 10 ,  
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Figure 3. Illustrative plot of squared difference JJFIJ' between observed and predicted 
distributions of  areas, versus and 8, implicitly used in maximum likelihood estimates of 
these two exponents. Note that the straight, diagonal trough foretells that errors in the two 
exponents should track each other, hut with much greater fluctuations in the former. See 
text for details. This plot is from an early run with x = 2 .  

3 is a plot of ((F(12 as a function of p and 8 for p=O.56. The flat 'trough' running 
roughly north-east to south-west contains the minimum of llFl1. Along this trough, 
large changes in (p,  0)  cause only small changes in llFll so that the minimum is 
difficult to locate. (This behaviour is typical of the systems of equations arising from 
the use of maximum likelihood for exponential families [24].) We carried out this 
calculation in double precision, using the NAG routine SNSQ. 

We obtained estimates of 8 and p for different values of p and x = 3 for many 
different values of nmln. I n  principle, the higher n,,,,  the closer the result should be 
to the correct asymptotic value. Indeed, corrections of the order of l/n,," can be  
expected, as well as possibly more dominant corrections to scaling arising from 
deviations from the asymptotic behaviour of relation ( I ) .  

I n  figure 4, we display our determinations of p and 8 for p = 0.56, x = 3 and  for 
n,,, = 0 and 2, mod 4. Evidently the cases with n,,, a multiple of 4 converge to the 
asymptotic value from below while the others converge from above. Hence, a simple 
extrapolation would be quite noisy. In  the cgure we see that the convergence is improved 
when n,,,>40; by extrapolation, we estimate that p =  1.731 *0.002. Similar sharp 
estimates, consistent with this value, are obtained from runs at larger p. Figure 4 also 
shows that the fluctuations in 8 follow those in p, but amplified by two orders of 
magnitude, as  might be expected because of the entropic nature of this exponent, to 
be  discussed below. Thus, it is not feasible to obtain a very precise estimate of 0; but 
one  can see that, roughly, 8 = 1.5*0.1. Extrapolation of the data for 8 in figure 4, i.e. 
with the fitting form 8+cons tan tx  n;:,,, still does not produce precise results; in 
contrast, [9] and 1191 used only the first four odd-multiple-of-two data points and  
obtained smoother curves, but none the less quoted comparable error bars. For runs 
at larger p the estimates of 6 are generally within these error bars, but usually well 
below 1.5. Figures 5 and 6 show similar results for p and 8, respectively, obtained at 
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1.720 
0 20 40 60 80 100 

minimum IS1 
Figure 4. Plots of the exponents f i  and 8, determined by maximum likelihood methods at 
@ =0.56,  versus nmln. Referred to the left ordinate, the values of p for nmln  an add or an 
even multiple of 2 are denoted by A and 0, respectively. Referred to the right ordinate, 
the YBIUCS of 0 for the lower cut-off an odd or an even multiple of 2 are denoted by 0 
and 0, respectively. While the vertical grids differ by two orders ofmagnitude, the variations 
track each other. 

1.732 

2 1.730 

1.728 
0 50 100 150 

minimum IS1 

Figure 5. Plot o f p  versus n,,,. for !3 = 0.568 (0) and p = 0.572 (0). Error bars are indicated 
by full and dotted lines. respectively. 
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0 50 100 150 
minimum IS1 

Figure 6. Plot of 0 versus n,;,,. The symbols have the same meaning as in figure 5 

p = 0.568 and 0.572. The situation for 0 seems to be due to the extremely flat character 
of F ( p ,  8) already mentioned above. Close inspection shows that again the variations 
in estimates of 0 track those of p, albeit on  a much larger scale. The key point is that 
8 is associated with In n while p is associated with n. This difference is built into the 
function F and amplifies the variation in the estimates of 8 due to noise in the data. 
Ultimately, this is a consequence of the fact that the derivative of In x is l/x, which 
becomes small for large x. 

We conclude that the maximum likelihood method is not able to lead to a very 
precise determination of 8. Taking a naive statistical attitude, we estimated B as an 
average of the various extrapolations obtained from all our runs at different p. The 
crude result is B = 1.39*0.10, where the uncertainty reflects the discrepancies among 
different runs. For p the final estimate obtained from the same strategy turns out to 
be p = 1.729 i 0.002. 

Given the large statistical errors in 0, we did not even attempt to estimate the 
possible influence of corrections to scaling. 

3.2. Determination of 0 and p via scaling plots 

Following the approach of Sterling and Greensite [14]-but mindful that our definition 
of p is the negative logarithm of theirs-we consider 

given in in  ihe 8 - B F ,  ~~ ~ . .~ ~ _ .  ~ ~~ ~~ ~~~~ 

wc can mane a continuum approximaiion For 
the summation in  2. Using the asymptotic form of N ( n )  in (1), we find 
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So from (12) we can conclude that 

Notice that this continuum-based result makes sense only if the prefactor of the 
divergence, l i x - 8 ,  is positive. With a 8=1.5 ,  as found below, (14) would not be 
correct for OSx<O.5. In that case, the leading singular term in (13) would not be 
divergent, and (14) should be replaced by a singularity ~ [ p c / ( p c - ~ ) ] 2 + x ~ n ,  with 
2 + x - 8 < 1 .  I n  [14] the analysis of 8 was based on (14), hut with x=O. This incon- 
sistency, in our opinion, explains the serious discrepancies between our determinations 
8 and p. and those reported by Sterling and Greensite [14]. Figure 7 shows our plot 
of (ISi)-' as a function of p, based on the distributions from the runs at different p 
mentioned in section 3.1. The reciprocal of the intercept on the x-axis gives p, while 
the value of 8 can be easily extracted from the slope of a straight line superimposed 
on the data. It is remarkable how linear the data become in this plot. An estimate of 
the slope gives 8 = 1.500*0.026, while p = 1.729i0.036, reasonably consistent, 
although somewhat higher than the maximum likelihood estimate. The error bars for 
8 and p are obtained by propagating the standard deviations of the individual data 
points, as estimated from the fluctuations between independent runs. Due to the high 
degree of consistency of the results, this method appears to be more reliable-certainly 
more stable-for 8 than that in section 3.1. Accordingly, we based our final estimates 
of 8 and p on this method. 

An alternative approach makes use of the scaling properties of the entire distribution 
of surface areas rather than just average value. To the extent that the asymptotic 
expressions are valid, it should be possible to rescale these distributions for the various 

( ' ' 3  * I ' ' ~ ~ ,  8 '  

' 4 
0.012 . . . 
0.01 0 ,  i 'a . 

a.. . 
' \ O  . . 

. . 
0.004 P, 

0.560 0.565 0.570 
a r 

Figure 7. Plot of (ISI).' versus 8. The best A t ,  determined by linear regression. is shown 
by the broken line. The error bar for each point is about the size of the Small circle. In 
this analysis [14]. the intercept with the X - B X ~ B  giver 1/p,  while the value of 0 can be easily 
extracted from the slope of fitted straight line. See text. 
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values of P and x, as displayed individually in figure 2, so that the data collapse to a 
single universal curve. Specifically, simple differentiation with respect to n shows that 
the mode of the distribution occurs at [9,19] 

For x < 0, the maximum would be at the smallest allowed ISI, viz 6. 
We have already noted the failure of the continuum approximation when x < 9 - 1. 

The frequency of occurrence of the mode, N,,, = N(nmax) ,  for the normalized distribu- 
tion can then be readily evaluted using ( 1 )  and (13), and simplified to 

By then plotting N(n),",,, versus nln,, , ,  the data collapse neatly to a single curve, 
especially away from the extremities. To further bring out the dependence on 0, we 
next removed by hand the well characterized term (pp)", leaving n'x-81  and inviting 
a log-log plot. Accordingly, we plot in figure 8 [In(N(n)/ N,,,)-n In(pp)] versus 
ln(n/nmSx). The data overall collapse impressively. The slope of the linear part, 
predicted to be x - 0, is consistent with the values of 0 discussed earlier, but there is 
sufficient spread that the method does not easily distinguish between 1.4 and 1.5,  for 
example. For small surfaces we see clearly a bifurcation into separate curves for those 
surfaces which have area a multiple of 4 and those which do  not. For large surfaces 
we observe greater noise in the data and have truncated the high end to omit spurious 
scatter. 
3.3. Exponent Y and asymptotic rario n/V(n) 

The exponent v could be estimated more straightforwardly using linear regression. 

6~""""""""'"'"'"'""'""""""''~ 

-3 -2 -1 0 1 
SCALED ISI.,. 

Figure 8. Log-log plot of scaled probability, modified to remove the  well characterized 
dependence on p g ,  vcrsus surface area normalized by its made. for p =0.56 (A), 0.565 
(0)  and 0.57 (0). 
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Figure 9. Log-log plots of radius of gyration versus surface area for p =0.56 (O), 0.565 
(0) and 0.57 (0). The ordinate scale refers to the results for p =0.56; the other two were 
displaced upward by 0.5 and 1.0 respectively. 7 h e  straight lines were determined by linear 
regression over the range of minimal scatter; dl have slope within 0.001 of0.510.  

I . .  I , ,  , I " '  

0 200 400 600 800 
n 

Figure IO. Plots of n / V ( n )  versus n for rune with p =0.565 10) and p =0.568 < + I .  
Three-parameter fits to the form a +  bn-', with values of LI being 3.16 and 3.22, are shown 
as full and dotted curves, respectively. 
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Figure 9 shows, for several p, our Monte Carlo results for the root mean square radius 
of gyration, R ( n ) ,  of surfaces with IS1 = n. In each case, the log-log plot becomes 
linear rapidly, suggesting that the asymptotic regime has been reached. Again, we had 
to discard data for small n as non-asymptotic and for large n because of poor statistics. 
Using only the 'best' data, usually for In(n) between 3.4 and about 5.5, the slope for 
a half-dozen different p or  x was invariably with 0.001 of 0.510. On the other hand, 
this range is rather limited. For a broader range, there is much greater variation, from 
around 0.515 down to somewhat below 0.500. Averaging over the values obtained in 
all the runs and  discarding just the first 15 points led to an estimate for Y of 0.506i0.007, 
while by dropping the runs for the largest two p lowers the average to 0.503 without 
changing the error bars. Taken together, an estimate for U of 0.509i0.004 seems 
reasonable. This value is slightly above the estimate in [9, 191, which was consistent 
with ?,. Our data range did not allow a meaningful search for systematic errors, 
particularly for correction-to-scaling exponents. 

As already mentioned in the introduction, the surface-to-volume ratio is an impor- 
tant quantity to characterize the SARS. To obtain this ratio, we found it  most convenient 
to evaluate, as  a function of n, the average volume V ( n )  enclosed in sampled surfaces 
with IS1 = n. From the these data for n /  V ( n ) ,  we can then estimate the asymptotic 
value in the limit n + 00. Figure 10 show plots of n /  V ( n )  versus n for runs at different 
p. There is very strong evidence that the ratio asymptotically approaches a non-zero 
value which we estimate to be 3.18+0.03. This number was obtained by averaging, for 
several different p, the results of least-squares fits using the functional form a + b x - ' ;  
c was between 0.68 and 0.78. 

4. Concluding remarks and perspectives 

The results discussed in section 3 are obtained from statistics involving surfaces with 
areas nearly an  order of magnitude larger than those considered in [9,19]. We could 
achieve this closer approach to the asymptotic limit by removing the box constraint 
and by considering distributions with relatively high x and with p very close to pc.  
Higher values of x, or p even closer to the estimated pc than those considered here, 
would have enriched the sampling of high n, but at the price of inconveniences, such 
as  longer correlation times. Our  choice of p and of x seemed a reasonable compromise 
in  view of our  computational capabilities. Only one set of calculations has been reponed 
that seems to involve surfaces larger than ours [20], and  we seriously question the 
statistical significance of those results (cf 191). In [20] determination of U was accom- 
plished by using very large surfaces generated with p close to the pc of 0.531 previously 
determined by [14], which is considerably lower than our estimate of 0.578 for p,. 
Especially with such a small p, the sampling of very large surfaces ( n  near 5000) 
appears to us to be quite problematical. 

Our estimates of v are basically consistent with-albeit slightly larger than-the 
value of Glaus and Einstein [9, 191 and strongly corroborate the conjecture that our 
self-avoiding surfaces have the same exponent, U = $ ,  as that expected for branched 
polymers in 3 u .  The determination of 8 by maximum likelihood involved greater 
uncertainty; the value is less decisively in the  universality class of branched polymers, 
and  we feel that within this method a definitive conclusion about this exponent, 
unfortunately, cannot be reached, even after our extensive analysis. This tentative 
outlook contrasts with the more optimistic conclusions drawn i n  [9, 191. We have 
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shown here that the maximum likelihood approach, on which they relied exclusively 
to determine 0, gives results which are not only rather erratic but also do not become 
significantly sharper for samplings closer to the asymptotic limit. For a more reliable 
estimate of 0 the simpler kind of analysis described in section 3.2 appears more 
appropriate, and  gives 0 reasonably close to 2,  as expected for branched polymers 
[15]. As explained above, the reason why the similar analysis of [I41 did not give the 
results we found is primarily the inconsistency between (14) and the choice x = O .  

Another advance in our  results is the relatively high degree of confidence about 
the extrapolation of n /  V ( n ) .  A ratio of this ((/SI/ V ) )  form, averaged over all but the 
bottom of the distribution a t  p = 0.56, was tabulated in [ 191. The entries were for 
distributions truncated at several different small values of n,,,. A subsequent extrapola- 
tion [9] produced the estimate 3.5, suggesting that the tabulated data were not close 
enough t o  the asymptotic limit to warrant such extrapolation, but none the  less indicative 
of a non-vanishing limit. As anticipated in the introduction, this more important idea 
that the ratio remains above zero indicates that our surfaces enclose a region with 
fractal dimension not higher than I / v  and is an indication that ramified tubular 
configurations with tubes of minimal size presumably dominate in the ns statistics. 
This picture is consistent with the evidence from v and 0 that the problem belongs to 
the branched polymers unviersality class. It is more difficult to interpret the value -3.2 
of the asymptotic ratio. If this number were 4, topological considerations would indicate 
that asymptotically the surfaces d o  not include internal points, i.e. lattice points enclosed 
by the surface but not on the surface. 

It is interesting to note that bond lattice trees without loops in d = 3 have a critical 
bond fugacity of about 0.10 [26]. Our p c ,  raised to the power 3.2, gives 0.17, i.e. a 
number of the same order as  the above critical fugacity. Thus, it probably makes 3en5e 
to view the elementary cubes within the surface as playing a role similar to that of 
effective bonds in a branched polymer problem. 

Recent theoretical arguments [21], however, suggest that a very important role 
could be played by topology in determining critical behaviour, as long as one restricts 
the consideration to closed surfaces (empty boundary). Analytical results indicate that, 
as soon as one  considers surfaces which are closed, but have an unrestricted number 
of  handles (i.e. an arbitrary genus), the enclosed volume should grow asymptotically 
as R',  rather than as R"", as we found here for restricted topology (in ou r  case I /  v = 2).  
Thus, changing the topological constraints apparently can alter the universality class 
of a closed surface. No numerical verification of the above conjecture has appeared 
to date; in particular, a determination of U and B for closed SARS with unrestricted 
topology is needed. Suitable modifications of our algorithms can be efficiently used to 
investigate such an issue, and  work is already in progress on this line. 

The results of this paper, particularly the strong indication that SARS realize the 
critical behaviour of branched polymers in the scaling limit, leads to an obvious 
question: what are the requirements of a SARS model in order that it represents a 
genuine fractal surface in the scaling limit rather than a linear, even if highly ramified, 
object? We think that one way to achieve different critical behaviour without relaxing 
topological constraints is to enrich the model by allowing a local interaction with an 
effect analogous to an  extrinsic curvature dependence in the continuum. For example, 
an appropriate fugacity could be introduced to control the number of links joining 
plaquettes not lying in the same plane. I f  coplanar adjoining plaquettes are sufficiently 
favoured over plaquettes joining at right angles, it seems likely that a more compact 
structure than branched polymers should appear in the simulations. Thus, one could 
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possibly observe interesting multicritical phenomena in this generalized model as the 
fugacity is varied. The study of such multicritical phenomena might well reveal new 
universality classes for the generalized model. In  [25]  a model has recently been 
discussed in which effects similar to those postulated for the above local interaction 
are provided by the inclusion of annealed k i n g  vacancies in the problem. 

Acknowledgments 

TLE and ALS received funding for international collaboration from NATO Grant No 
86/0782. TLE is also partially funded by NSF Grant DMR 88-02986. We thank Isabel 
Beichl for numerous helpful interactions. ALS and TLE also benefitted from discussions 
with N C Bartelt. 

References 

[I] Balian R, Drauffe J M and ltrykson C 1975 Phys Reo. D 11 2104 
121 Drouffe J M and ltzykson C 1979 Phjir Reporr 38C 133 
131 Wilson K 1974 Phyx. Re". D IO 2445 
[4] Maritan A and Stella A 1984 Phj2.Y. Reo. Lelr. 53 123 
[SI Durhuus E, Frbhlich J and Jonsson T 1983 NueL Phjjs. B 225 IFS91 185 
161 Durhuus B,  Frbhlich J and Jonsson T 1984 Nael, Phy.7. 240 IFSS121 453 
[7] Kantor Y ,  Kardar M and Nelson D K 1986 Phys. Re". Lett. 57 791 
[8] Sokal A 1989 private communication 
191 Glaui U 1988 I SIOI.  Phyr. 50 I141 

[ IO]  Hammersley J M I961 Prur Camb. Phil. Soc. 57 516 
[I I] Frohlich J 1985 Applicarions ofField 7henr.v ojStatisrieo1 Mechanics (Lecture NOMS in Physicr 216) ed 

[ I Z ]  Maritan A and Stella A 1987 Nuci. P h p  B 280 IFS181 561 
[I)] Drouffe J M, Parisi G and Sourlar N 1979 Nucl. P h w  B 161 397 
[ I41 Slerling T and Greensite J 1983 Phy.5. Lerr. IZlB 345 
[ I51 Parisi G and Sourlas N 1981 Ph.vr Re". Lelr. 46 871 
[I61 Redner S 1985 J.  Phys. A: Morh. Gen. 18 L723; 1986 19 3199 
[I71 Clam U 1986 Phyr. Re". L ~ u .  56 1996 
[ I81 See also, eg, Cates M E 1985 Phys. Lerl. 1618 363 
[ I91 Glaus U and Einstein T L 1987 J. Phss. A: Morh. Gen. 20 L I O S  
[20] Karowski M 1986 J, P1s.w A: Morh Get,. 19 3375 
[21] Banavar J K, Maritan A and Stella A L 1991 Science 252 825 
[22] Libes D 1989 NlST Internal Kepan 89-4055 submitted for publication 
[23]  Berretti A and Sokal A 1985 J. Star. Phvs. 40 483 
[24] Rasenblatt J 1989 private Communication 
[25] Maritan A, Seno F and Stella A L 1991 Phyr. Re". B 44 2834 
[26] de Gennes P G 1985 Reo. Mod, Php .  57 827 

L Garrido (Berlin: Springer) 


